

Indirect Dark Matter Searches with the Fermi Large Area Telescope

Andrea Albert (SLAC)
on behalf of
The Fermi LAT Collaboration

Research Progress Meeting LBNL December 4th, 2014

Outline

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - -Lines
 - Galactic Center
 - Dwarfs

Outline

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - Lines
 - Galactic Center
 - Dwarfs

Dark Matter Primer

- Dark Matter clumps in large halos around galaxies making up most of their mass
 - Coma Cluster + Virial Theorem, F. Zwicky (1937)
 - Galactic Rotation Curves, V. Rubin et al 1980)

- Dark Matter is virtually collisionless and non-baryonic
 - The Bullet Cluster, D. Clowe et al (2006)
 - CMB Acoustic Oscillations, Planck (2013)
- Weakly Interacting Massive Particle (WIMP, X)
 - WIMPs may be thermal relics
 - WIMP in thermal equilibrium in early universe
 - Universe cools enough, amount of DM freezes out
- Assume weak scale $\sigma_{ann} \rightarrow$ observed abundance (~27% of energy density)
 - $\langle \sigma v \rangle_{ann} \sim 3e-26 \text{ cm}^3/\text{s} (\sigma_{ann} \sim 3 \text{ pb})$

Dark Matter Primer

- Dark Matter clumps in large *halos* around galaxies making up most of their mass
 - Coma Cluster + Virial Theorem, F. Zwicky (1937)
 - testic Rotation Curves, V. Rubin et al 1980)

Thermal Relic <ov>
ann is well-motivated hypothesis Dan Hooper: "Not a fishing expedition" Though SUSY gives many other hypotheses too...

- - WIMPs may be thermal relics
 - WIMP in thermal equilibrium in early universe
 - Universe cools enough, amount of DM freezes out
- Assume weak scale $\sigma_{ann} \rightarrow$ observed abundance (~27% of energy density)
 - $<\sigma v>_{ann} \sim 3e-26 \text{ cm}^3/\text{s} (\sigma_{ann} \sim 3 \text{ pb})$

How to Detect WIMPs

Gamma-rays from WIMPs

Spectral Line

 $\frac{v_{\mu}}{\pi^{+}} \frac{v_{\mu}v_{e}}{e^{+}}$ $\frac{\pi^{-}}{\nu_{\mu}} \frac{\text{Neutrinos}}{v_{\mu}v_{e}}$

+ a few p/p, d/d

Anti-matter

π0

Gamma-rays

- Believe the Milky Way sits in a large, spherical "halo" or cloud of cold DM (v_{DM} << c)
 - Expect DM overdensities (subhalos)
 - Largest are the dwarf galaxies
 - Other extra-galactic DM expected too
 - e.g. Galaxy Clusters
- WIMPs annihilations (decays) may produce gammas
 - Dominant channels -> broad continuum
 - Monochromatic channels expected to be rare (loop-suppressed)

Indirect WIMP Signatures

What we observe

Intrinsic Particle Properties

Astrophysics

$$\Phi_{\chi}(E, \psi) = \frac{\langle \sigma_{\chi} v \rangle}{2} \sum_{f} \frac{dN_{f}}{dE} B_{f} \int_{LOS} dl$$

Monochromatic Signal

J-factor – Line of sight integral over a ROI

Outline

9

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - Lines
 - Galactic Center
 - Dwarfs

Fermi Large Area Telescope (LAT)

- On board the Fermi Gamma-ray Space Telescope
 - Launched June 11, 2008 (science mission started Aug. 2008)
 - Mission extended at least through 2016
 - No consumables
 - Orbit re-entry expected ~2026-2044 (depending on solar activity)
 - LAT has triggered on >380 billion events
 - Processed >73 billion events (>1 Petabyte!)

Fermi LAT

Public Data Release:

All γ -ray data made public within 24 hours (usually less)

Si-Strip Tracker:

convert γ->e+ereconstruct γ direction EM v. hadron separation

Hodoscopic Csl Calorimeter:

measure γ energy image EM shower EM v. hadron separation

Trigger and Filter:

Reduce data rate from ~10kHz to 300-500 Hz

Anti-Coincidence Detector:

Charged particle separation

Fermi LAT - "front" vs. "back"

Gamma-ray Event Classes

- Triggered events are dominated by CR background events
 - Need to define additional cuts to get γ -ray rich dataset
- Nested "event classes" for various types of γ ray sources
 - **Transient:** loosest, for transient sources (< 200 s)
 - Source: moderate, for bright sources (cut in space)
 - Clean: tight, for γ -ray diffuse
 - Ultraclean: tightest, for extragalactic γ rays

Total residual CRs

Primary CR e+ e-

10⁵

Secondary CRs

Fermi LAT Performance

see also M. Ackermann et al (The Fermi LAT Collaboration) ApJS 203, 4 (2012) arXiv:1206.1896

Fermi LAT Performance

M. Ackermann et al (The Fermi LAT Collaboration) ApJS 203, 4 (2012) arXiv:1206.1896

Upcoming Developments -- Pass 8

Improvements to LAT performance

- Increased energy range
- Increased effective area
- Improved angular resolution
- Better bkg rejection
- New event classes

Impacts for DM searches

- Explore new high-mass parameter space
- Increased flux sensitivity
- Greater sensitivity to spatially extended sources
- Better handle of systematics

Outline

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - Lines
 - Galactic Center
 - Dwarfs

Daily Gamma-ray Sky

Fermi LAT Gamma-ray Sky

19

4 year all sky map (E > 1 GeV)

Fermi LAT Gamma-ray Sky

Nature has given us a rich and complicated gamma-ray sky!

Fermi Gamma-ray Space Telescope Science One person's background is another person's source!

Lunar Gamma rays

- CR hitting surface
- Correlated w/ solar activity

Supernova Remnants

- •25 published SNR + 30 cands in 2FGL
- Multiwavelength obiects
- •Require good diffuse emission modeling

Gamma-ray Bursts

- •35 LAT. 1000+ GBM
- •GBM + LAT spectra

Terrestrial Gamma-ray Flashes

- Associated w/ thunderstorms
- •Observed by GBM & LAT

Pulsars (e.g. Vela)

- •117 Fermi-LAT det. pulsars
- Multiwavelength objects
- •PSR J2021+4026 shows variablilty

e-e+ Energy Spectrum

• LAT can measure e's too

board high-energy excess

PRD 82, 092004

Pulsar Wind Nebula (e.g. Crab)

- •15 candidates found by LAT
- Multiwavelength objects

Star-Forming Galaxies

ApJ, 751, 159 (2012)

- •LAT has seen 7
- Potential LAT-CTA synergy

Extragalactic bkg

- Spectrum from 0.2-410 GeV
- Ainsotropy →population info

Blazars

- Largest population of LAT known sources
- •PKS 1424+240 is harder than expected
- Multiwavelength objects

Solar Flares

- •Observed by GBM & LAT
- •X-class Flare on March 7th, 2012 excess lobes

Solar System

Galactic

Extragalactic

Andrea Albert (SLAC)

12/04/2014 21

Outline

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - -Lines
 - Galactic Center
 - Dwarfs

Galactic Distribution of DM

Large Astrophysical Background

Milky Way Halo simulated by Taylor & Babul (2005) All-sky map of DM gamma-ray emission (Baltz 2006)

Outline

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - -Lines
 - Galactic Center
 - Dwarfs

Spectral Lines from WIMP annihilations

- Feltin
- Weakly Interacting Massive Particles (WIMPs) are a promising dark matter candidate
- WIMP annihilations in the Universe may produce gamma rays detectable by the Fermi Large Area Telescope (LAT)
- $\chi\chi \rightarrow \gamma\gamma$, γZ^0 , γH^0 would produce a narrow feature
 - Sharp, distinct spectral feature ("smoking gun")
 - Likely a small branching fraction

Pass 8 Improvements Relevant for Line Search

- Improved energy reconstruction in Pass 8
 - Energy recon. above ~1 GeV optimized with better modeling of calorimeter shower (e.g. improve handling of gaps between modules and crystal saturation)
 - Increased effective area with equivalent energy resolution
- Event reconstruction and selection classes are new in P8
 - Pass 8 is a new "lens" we can view lines through
 - Important check for tentative 133 GeV feature

Search for Spectral Lines with Pass 8

- R3 (contracted NFW, no src masking)
- R16 (Einasto)
- R41 (NFW)
- R90 (Isothermal)
- R180 (DM Decay)

ROI optimization motivated by Bringmann et al 2012 (arXiv:1203.1312) and Weniger 2012

(arXiv:1204.2797)

- Search for lines from 200 MeV 500 GeV using 5.8 years of data
 - Maximum likelihood fit with improved energy dispersion model
- Use same 5 ROIs as 3.7 year search
 - Ackerman et al. (The Fermi LAT Col.) PRD 88, 082002 (2013)
- Use P8_CLEAN event selection
 - Clean cuts are recommended for faint diffuse emission analysis

Search for Spectral Lines with Pass 8

5.8 year Counts Map

Pass 8 Line Search f_{sys} from Galactic Plane Scans

- There are some common features likely from the effective area (A_{eff})
- Displacement from 0 is mostly from A_{eff}, while spread is from bkg. modeling
- Larger systematic effect with wider windows (since power-law approx. gets worse)

P8 Line Search Accounting for f_{sys} in Likelihood

- Search with 5.8 years of P8 Clean data for lines from 200 MeV < E_v < 500 GeV
 - Use $\pm 0.5 \, \text{E}_{\gamma}$ fit windows to optimize at low energies (where systematic limited) and high energies (where statistical limited)
- Include nuisance parameter (n_{svs}) for systematically-induced line-like features
 - Only detect a significant line if larger than the line-like features we see in the control regions
 - Introduced method in low-energy line paper (A. Albert et al. JCAP10(2014)023)
 - Similar technique used to incorporate J-factor uncertainties dSph analysis
 - Can be applied whenever accounting for systematic uncertainties is important

$$C(E,\vec{\alpha}) = ((n_{sig} + n_{sys})S(E,E_{\gamma}) + n_{bkg}B(E,\Gamma_{bkg})) * G_{sys}$$

$$\sigma_{sys} = \delta f_{sys} * b_{eff}$$

 n_{sys} is constrained using δf_{sys} estimated with control regions

$$G_{sys} = \frac{1}{\sigma_{sys} \sqrt{2\pi}} e^{-n_{sys}^2/2\sigma_{sys}^2}$$
Gaussian constraint on n_{sys}

Andrea Albert (SLAC)

Spectral Line 95% CL Upper Limit R16

Line-like Feature Near 133 GeV – 3.7 year

P8_Clean

33

- Same fit parameters as 3.7 year line search (Ackerman et al. PRD 88, 082002 (2013))
 - Fits in R3, 3.7 year, $\pm 6\sigma_E$ fit window
- No strong evidence of 133 GeV Feature in Pass 8
 - Lower fractional size and significance
 - Energy recon. in P7 vs. P8 changes within expected energy resolution

Event Level Investigation Near 133 GeV

- 5.8 year datasets, R3, look at events in both P7REP and P8 Clean
- Energy shift from P7REP -> P8 similar near 133 GeV as all event > 20 GeV
 - Nothing unique happening at near 133 GeV
 - Energy recon. in P7 vs. P8 changes within expected energy resolution
 - (gaussian with width ~0.07)
- Slight enhancement near 133 GeV where centroid of energy in CAL near tower edge
 - These are tricky events to reconstruct since edges of shower lost in gaps

Line-like Feature Near 133 GeV – 5.8 yr

- Feature is even smaller in 5.8 year P8 Clean dataset
 - Consistent with statistical fluctuation in P7 REP 3.7 year dataset

Outline

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - -Lines
 - Galactic Center
 - Dwarfs

The Galactic Center is Really Complicated!

- Focus on 15° x 15° region (~ 1 kpc)
- 1-100 GeV, P7REP Clean, Front-converting
- 62 months
- Significant fore/background emission
- Complex diffuse emission from CR interactions with radiation fields, gas, etc
- Large density of gamma-ray sources that are hard to disentangle from interstellar emission
- LAT team presented preliminary results on a general characterization of the gamma-ray emission in this region
 - Not a DM-focused search
 - Mine is an incomplete, biased summary of a very complex analysis

The Galactic Center is Really Complicated!

- Focus on 15° x 15° region (~ 1 kpc)
- 1-100 GeV, P7REP Clean, **Front-converting**

fielas, y

ificant fore/background

- Large density of gam. sources that are hard to disentangle from interstellar emission
- LAT team presented preliminary results on a general characterization of the gamma-ray emission in this region
 - Not a DM-focused search
 - Mine is an incomplete, biased summary of a very complex analysis

Credit: Simona Murgia

Fore/Background Tuning Procedure (1)

- 2 models for CR source distribution
 - Pulsars
 - OB stars
- Use GALPROP to model π⁰
 and IC in Galactocentric rings
 - Tune isotropic, Loop I for each model
 - 3FGL held constant for tuning

- Tune from outside in excluding GC with 2 procedures
 - adjust intensity only
 - adjust intensity and spectrum (allow π^0 spectrum to be a broken power law (break at ~2GeV) inside local circle)
- 4 models in total
 - CR src = {Pulsar, OB stars}, {tuned intensity, tuned index}

Fore/Background Tuning Procedure (2)

Galactocentric ring boundaries.

Ring #	$R_{ m min}$ [kpc]	$R_{ m max}$ [kpc]	Longitude Range (Full)
1	0	1.5	$-10^{\circ} \le l \le 10^{\circ}$
2	1.5	2.5	$-17^{\circ} < l < 17^{\circ}$
3	2.5	3.5	$-24^{\circ} \leq l \leq 24^{\circ}$
4	3.5	8.0	$-70^{\circ} < l < 70^{\circ}$
5	8.0	10.0	$-180 \le l \le 180^{\circ}$
6	10.0	50.0	$-180 \le l \le 180^{\circ}$

- Tune from outside -> inside excluding GC
- Select regions where the ring we're trying to constrain dominates

Modeling the Emission in the 15° x 15° ROI

- Separate modeling for each of the 4 fore/background models
 - i.e. point source candidates (TS > 9) in region determined from scratch for each model
- Intensities for π^0 and IC in innermost ring fit using appropriate pt src candidates
 - fore/background model assumed is held fixed
 - IC emission in GC (ring 1) is larger (~7-30x) than pre-tuned GALPROP baseline model
 - Possibly from higher ISRF and/or higher CR lepton intensities in the GC than originally assumed
 - Only ~4-15x larger when including NFW template (see next slide)
 - π^0 HI component is about ~2x larger with NFW template in fit than without
- An excess peaking around a few GeV is seen in all 4 fore/background models
- Morphology & spectrum of excess is strongly dependent on fore/background model
 12/04/2014

Spectrum of Excess Assuming NFW Template

Gamma-ray

- Include additional component in fit with an NFW template
 - Tried various additional templates, but NFW performed best
- Spectrum of emission in NFW model strongly dependent on fore/background models
 Andrea Albert (SLAC)

What is Causing this Extra High-energy Emission? (1)

- Many groups have found a similar excess in the GC and interpreted as gamma rays from DM annihilation
 - Expect brightest DM signal from the GC, but modeling other astrophysical components is tricky
- Regardless of what it is, any new high-energy gamma-ray source is exciting!
 - Much more study is needed to better understand the spectrum and morphology

What is Causing this Extra High-energy Emission? (2)

Calore et al 2014

- Calore et al scanned DM template along GP and found other excesses
 - Similar intensities as GC excess, but different spectra
- GC GeV excess story is currently unclear and requires much more study
 - We do have another independent DM search that can test the DM interpretation of the GeV excess: dwarf spheroidal galaxies

Outline

Dark Matter Overview

- The Fermi Large Area Telescope
 - The Gamma-ray Sky
- Recent Dark Matter Results
 - Lines
 - Galactic Center
 - Dwarfs

DM Search in MW Dwarf Galaxies

J-Factors for Dwarf Galaxies

$$\int_{\Delta\Omega(\phi,\theta)} d\Omega' \int_{los} \rho^2(r(l,\phi')) dl(r,\phi')$$

Pass 8 Improvements Relevant for Dwarfs

Effective area increase by ~25% above 1GeV

Point-source sensitivity improved by ~40% for 1-10 GeV

 Joint likelihood with all PSFs types improves sensitivity by ~15%

Similar to EDISP type improvement in line analysis

Simulation of region around dwarf

Results from Blank Field Control Regions

- Using more extensive point-source catalog (3FGL) mitigates some of the MC-data discrepancy
 - Suggests discrepancy in TS distributions from MC and random sky data is due in part to unresolved point sources

Combined dSphs Results

Expected sensitivity estimated from blank sky ROIs

Joint likelihood analysis of 15 dwarf galaxies

- 5 years of data in energy range 500 MeV 500 GeV
- Account for uncertainties in J-factor
 - DM distribution determined using observed stellar velocities
- No DM seen
 - Exclude canonical thermal relic cross-section for masses less than ~10 GeV (in bb and tau's)

Dwarfs as Check of GC Excess

- Expect same DM in dwarfs as in GC
 - Independent check of DM interpretation of the GeV excess in the GC
- No excess seen in dwarfs, limits are starting to exclude some of the DM signal regions from the GeV excess
 - Increased exposure and finding new dwarfs will improve limits and help clear up the situation

Future DM Sensitivity

Summary

- Fermi continues to be an immensely successful mission (>6 yrs, hope for 10+)
 - Unique window to γ -ray sky from 20 MeV to >300 GeV)
 - Publically available data and analysis tools (http://fermi.gsfc.nasa.gov/ssc/)
 - Expect more exciting results as continue to observe and study the γ -ray sky!
- The Fermi LAT team has looked for indirect DM signals using a wide variety of different methods
 - So far no signals have been detected and strong constraints have been set
 - Exclude thermal relic WIMPs below ~100 GeV in bb and tau channels
- No spectral lines detected, 133 GeV feature not significantly present in Pass 8
- Evidence for excess in Galactic Center that peaks around 2 GeV
 - 4 tuned fore/background emission models used
 - Spectrum and morphology of excess is strongly dependent on fore/background model assumed
 - Much more study is needed to better characterize and understand this excess
- No gamma-ray emission observed from dwarf spheroidal galaxies
 - Independent check of DM interpretation of GC excess
 - Limits starting to rule out possible DM models of the GC excess

BACKUP SLIDES

Gamma-ray Acceptance

Acceptance [m² sr]

M. Ackermann et al (The Fermi LAT Collaboration) ApJS 203, 4 (2012) arXiv:1206.1896

Pass 8 Line Search f_{sys} from Control Regions

"2D" Line Model with Pass 8

- P8 has more event types available with IRFs for each type
 - Similar to "front" vs. "back" IRFs.
- EDISP types select events based on energy recon quality
 - 25% quantiles of "Best Energy Prob" as function of energy
 - In given energy range, each EDISP type has ~same acceptance
- Including EDISP types → ~10-15% improvement to signal sensitivity
 - Amount of improvement depends on energy
- Similar to improvement in P7REP analysis using 10 Best Energy Prob bins
 52/04/2014

Width of 133 GeV Feature

- Let width scale factor float in fit (while preserving shape)
- $s_{\sigma} = 0.32^{+0.22}_{-0.07} (95\% CL)$ $\Delta TS = 9.4$
 - Feature in data is <u>much narrower</u> than expected energy resolution ($s_{\sigma}=1$)

Earth Limb Control Dataset

- CR interactions in atmosphere produce secondary γ rays
- Select $|\theta_r| > 52^0$ so not dominated by large θ events
 - 0.03% of the 3.7 year observing time
 - Negligible celestial "shine through"

133 GeV Feature in the Limb with Pass 8

5.8 year P7REP_Clean

5.8 year P8_Clean

- Feature still present in limb in Pass 8
 - Given small fractional size, would be $<1\sigma$ in GC

General CTA Array Design

Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes

Medium energies

100 GeV – 10 TeV
 9.5 to 12 m diameter
 up to 25 single-mirror telescopes
 up to 24 dual-mirror telescopes

High energies

10 km² area at few TeV4 to 6 m diameter✓ up to 70 telescopes

CTA Performance

